

Fujitsu BS2000/OSD Mainframe Summit 2013

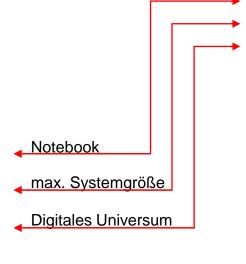
Mystifying Big Data

Dr. Fritz SchinkelProgram Manager Solutions and Innovations

Agenda

- Das Big Data Phänomen
 - Exponentielles Datenwachstum
 - Definierende Eigenschaften für Big Data
 - Einschätzungen zu Big Data
- Big Data Beispiele
 - Gewinnung von Marketing Informationen
 - Persönliche Daten: Quantified Self bis Patients Like Me
 - Crowd Sourcing: Wikipedia und Kaggle
- Big Data Infrastruktur
 - Technologien
 - Referenzarchitektur für Big Data
 - Big Data Angebot von Fujitsu

Das Big Data Phänomen


Exponentielles Datenwachstum

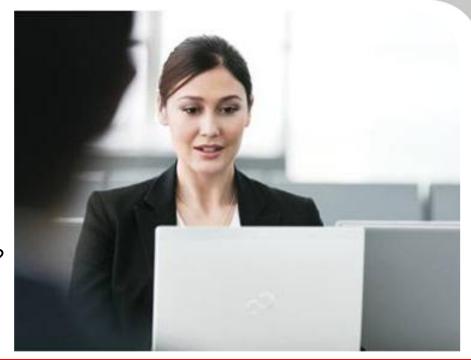
7eichen Lesung

- 65% jährliches Wachstum / Verdopplung alle 18 Monate
- 94% der Daten stammen aus den letzten 5 Jahren
- 2.7 Zettabyte in 2012

Dezimalpräfixe			
Name (Symbol)	Bedeutung ^[G 1]		
Kilobyte (kB) ^[G 2]	10 ³ Byte = 1.000 Byte		
Megabyte (MB)	10 ⁶ Byte = 1.000.000 Byte		
Gigabyte (GB)	10 ⁹ Byte = 1.000.000.000 Byte		
Terabyte (TB)	10 ¹² Byte = 1.000.000.000.000 Byte		
Petabyte (PB)	10 ¹⁵ Byte = 1.000.000.000.000.000 Byte		
Exabyte (EB)	10 ¹⁸ Byte = 1.000.000.000.000.000.000 Byte		
Zettabyte (ZB)	10 ²¹ Byte = 1.000.000.000.000.000.000.000 Byte		
Yottabyte (YB)	10 ²⁴ Byte = 1.000.000.000.000.000.000.000.000 Byte		

Zaiii	Deutsch	Zeichen	Lesung
10 ¹	Zehn	+	jū
10 ²	Hundert	百	hyaku
10 ³	Tausend	Ŧ	sen
10 ⁴	Zehntausend	万	man
10 ⁸	100 Millionen	億	oku
10 ¹²	1 Billion	兆	chō
10 ¹⁶	10 Billiarden	京	kei, kyō
10 ²⁰	100 Trillionen	垓	gai
10 ²⁴	1 Quadrillion	秭	shi, jo
10 ²⁸	10 Quadrilliarden	穣	jō
10 ³²	100 Quintillionen	溝	kō
10 ³⁶	1 Sextillion	澗	kan
10 ⁴⁰	10 Sextilliarden	正	sei
10 ⁴⁴	100 Septillionen	載	sai
10 ⁴⁸	1 Oktillion	極	goku
10 ⁵²	10 Oktilliarden	恒河沙	gōgasha
10 ⁵⁶	100 Nonillionen	阿僧祇	asōgi
10 ⁶⁰	1 Dezillion	那由他	nayuta
10 ⁶⁴	10 Dezilliarden	不可思議	fukashigi
10 ⁶⁸	100 Undezillionen	無量大数	muryōtaisū

7ahl


Deutsch

Quelle: Wikipedia

In Daten Informationen finden, um...

- ... Trends und Chancen vorherzusagen?
- ... die richtigen Entscheidungen zu treffen?
- ... Entscheidungen zu beschleunigen?
- ... automatische Reaktionen auszulösen?
- ... den Kosten auf den Grund zu gehen?
- ... überflüssige Aktivitäten zu vermeiden?
- ... Risiken einzuschätzen und zu minimieren?
- ... zu wissen, was wir nicht wissen?
-

Können diese Träume Wirklichkeit werden?

Von Business Intelligence zu Big Data

BI bisher

- Interne Daten
- Strukturiert / relational
- Wenige Quellen
- GB und TB
- Berichtswesen
- Risikovermeidung
- Periodisch
- Batch
- Statisches Datenmodell
- Wenige direkte Benutzer
- Im eigenen Rechenzentrum

Heutige Anforderungen

- Interne und externe Daten
- Un-/semi-/poly-/strukturiert
- Viele Quellen
- TB und PB
- Vorhersagen
- Chancen erkennen
- Ad-hoc
- Echtzeit (Analyse → Aktion)
- Versuch und Änderung
- Viele Benutzer, Mill. Events / sec
- Überall, von jedem Endgerät

Erschwingliche Technologien zur schnellen Erfassung, Speicherung und Analyse

Einschätzungen zu Big Data

The Problem With Big Data Is That Nobody Understands It

The United States alone faces a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 million managers and analysts to analyze big data and make decisions based on their findings.

[McKinsey Study 2011]

Björn Bloching, Lars Luck, Thomas Ramge (2012):

Data unser (In data we trust)

Die Revolution der Kundendaten geht in die nächste Runde. ... Die Ära der Intuition ist vorbei, Daten sind der Kitt in der Kundenbeziehung

Klar: Daten entstehen in großen Mengen

Erkennbar: Techniken zu Analyse

Offen: Was machen wir daraus?

Rudi Klausnitzer (2013):

Das Ende des Zufalls

Wir und unser Leben werden immer berechenbarer!
Wachsam gegenüber den Gefahren, aber offen für die riesigen Chancen.

Big Data: Herausforderungen und Chancen

of millions

Locations

Image Analysis Billion objects 45 million 100,000 Social Complex Event Processing per hour Flights/day Servers Network Data Layer Management billion 1 billion Rides per day Scan Users Route Points of Interest Sensor Data search 100s 200 million Area Managements

1 billion

Pictures/day

PCs

Billions of requests per day

Business Data

Personal Profiles

Billions of

measurements per day

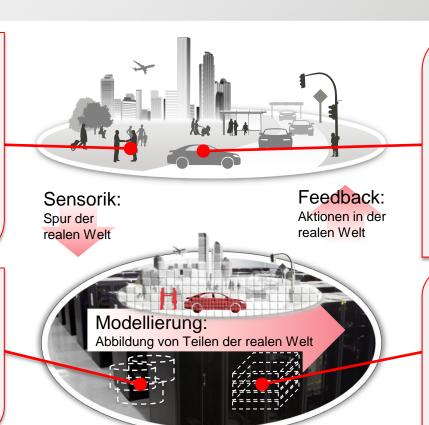
600 million

Smartphones

1 billion Cars

Congestions Forecast

Big Data: LifeCycle



Datenquellen

- Firmendaten, Historie
- Öffentliche Daten
- Internet-Nutzung
- Soziale Netzwerke
- Smartphone Nutzung
- Sensoren z.B. am Auto
- Quantified-self
- **.**..

Datenhaltung

- Private Datensammlungen
- Online / Nearline / Archiv
- Öffentliche Datendienste
- Kommerzielle Daten
- **-** ...

Datennutzung

- Information
- **Empfehlungen**
- Marketing
- Produktoptimierung
- Entscheidungen
- Steuerung
- ...

Datenanalyse

- Bereinigung
- Klassifikation
- Modellbildung
- Vorhersagen
- **-** ...

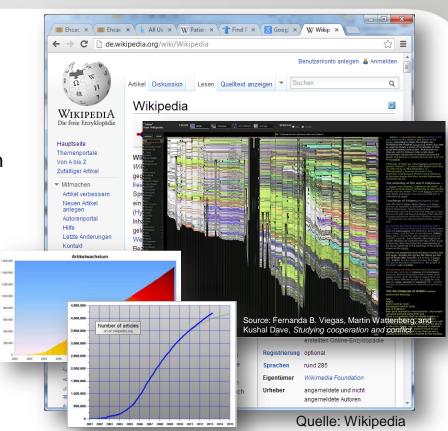
Schwangerschaftstest am Supermarktregal

- Marketingziel: Junge Familie
 - Familiengründung und Nachwuchs → Anschaffungen
 - Wettlauf um wertvolle Marketinginformation
- Wie kann ein Supermarkt eine Geburt voraussagen?
 - Einkaufsbiographien durch Analyse einiger Millionen von Bons!
 - Schwangerschaftsvorhersage basierend auf 25 Artikel
 - Abschätzung des Geburtstermins auf wenige Tage
- Wie ist die Information nutzbar?
 - Die richtige Werbung für jede Phase der Schwangerschaft
 - Beeinflussung des gesamten Konsumverhaltens der Zielgruppe
- Gibt's das wirklich?
 - US Supermarktkette Target
 - Data Scientist Andrew Pole

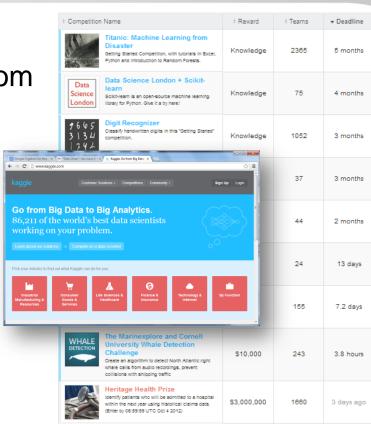
"We'll be sending you coupons for things you want before you even know you want them."

[Andrew Pole, NYT Magazine 2012]

Soziale Netzwerke: Patients Like Me

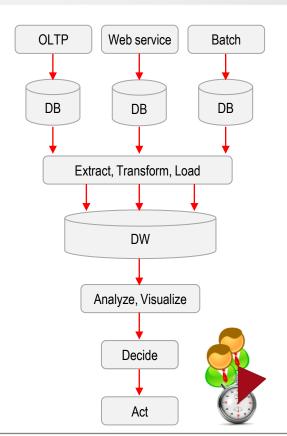

- Patienten Selbsthilfegruppen als Soziales Netzwerk im Web
- Gegründet 2004 von Jamie Heywood
- Anlass war die Amyotrophe Lateral Sklerose (ALS)
 Erkrankung seines Bruders Stephen Heywood
- Patienten geben Informationen über Krankheitsverlauf und Behandlungsergebnisse
- Profitieren sehr schnell von Erfahrungen anderer
- Trendvorhersagen für individuelle Therapieanpassungen und begleitend zu klinischen Studien
- Zur Zeit ca. 200.000 Mitglieder
- Profit-Organisation finanziert sich durch anonymisierte Datenweitergabe an Industrie, keine Werbung

Geteiltes und mitgeteiltes Wissen: Wikipedia


- Frei lizensierte hochwertige Enzyklopädie
- Gegründet 2001 von Jimmy Wales
- Freier Zugang und geregelte Verwendbarkeit des Wissens
- Erstellung, Diskussion und Review der Artikel durch freie Autoren basierend auf wenigen Regeln
- Zur Zeit ca. 1,5 Millionen angemeldete Benutzer
- Aktuell 286 Sprachen, 4,2 Millionen englischsprachige und 1,5 Millionen deutschsprachige Artikel
- 25.000 60.000 Zugriffe pro Sekunde, > 400 Server
- Non Profit-Organisation, finanziert durch Spenden, keine Werbung

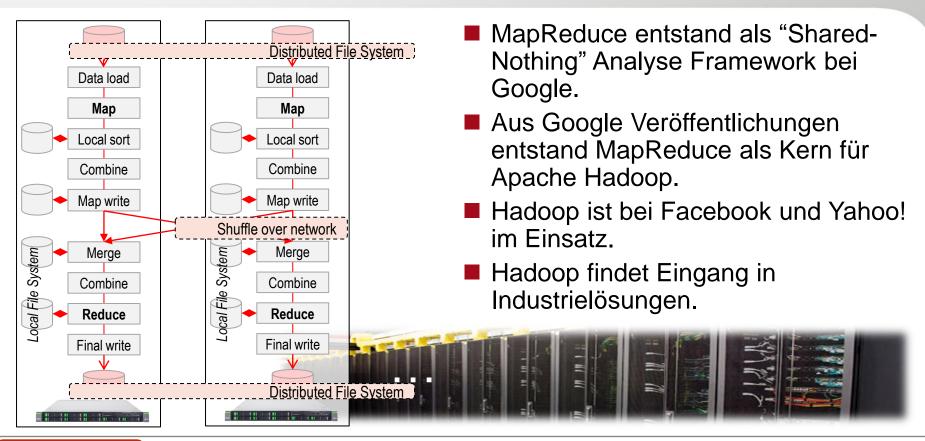
Crowd Sourcing Data Science: kaggle

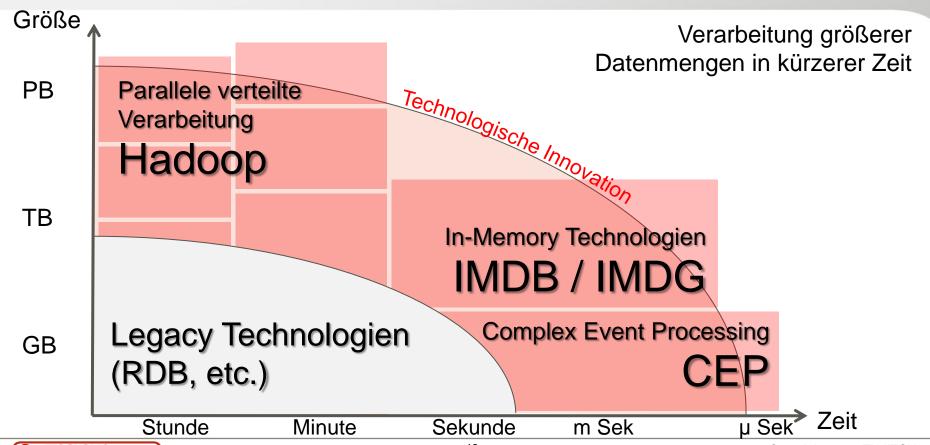
- Big Data Analytics als Wettbewerb
- Gegründet 2010 von Anthony Goldbloom
- Webportal verknüpft Aufgabensteller / Sponsoren mit Teilnehmern
- Zur Zeit über 85.000 registrierte Benutzer
- Bislang 70 Wettbewerbe um Wissen, Jobs und Preisgeld
- Höchster bislang ausgelobter Preis: Heritage Health Prize, 3.000.000 \$

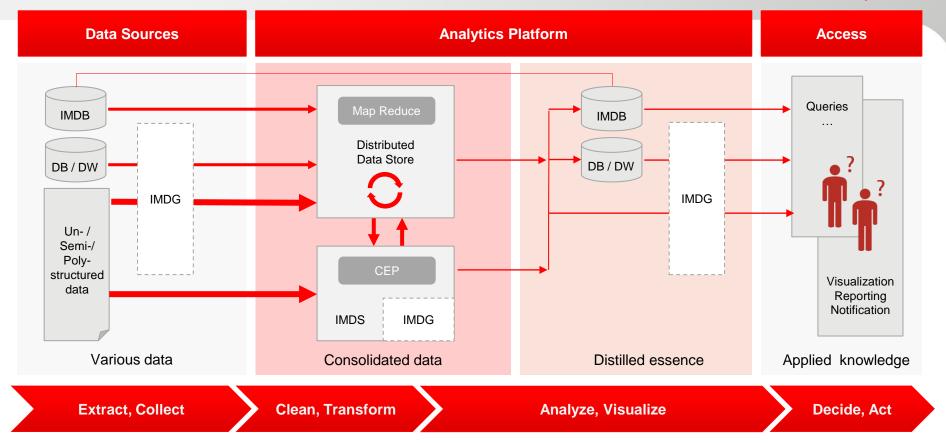


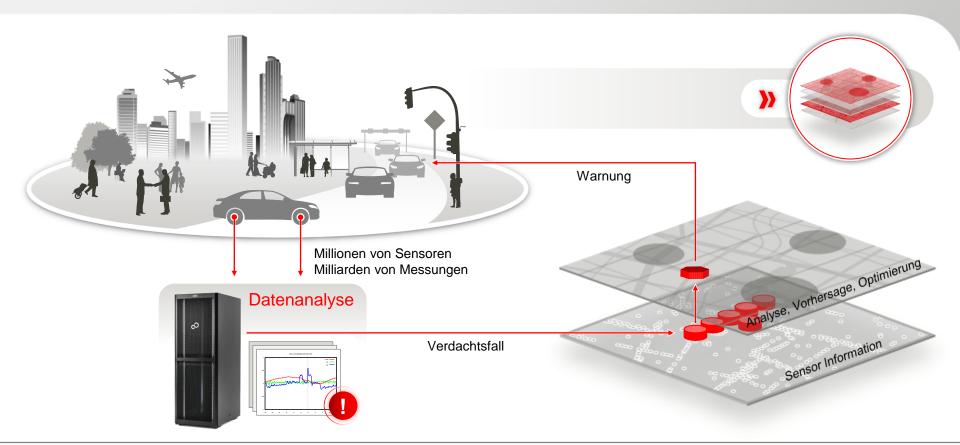
Big Data Infrastruktur

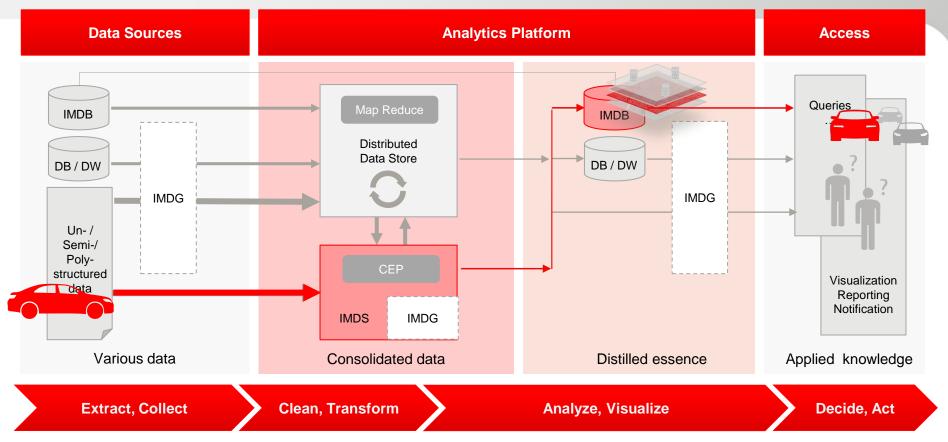
Vom Data Warehouse zu BigData

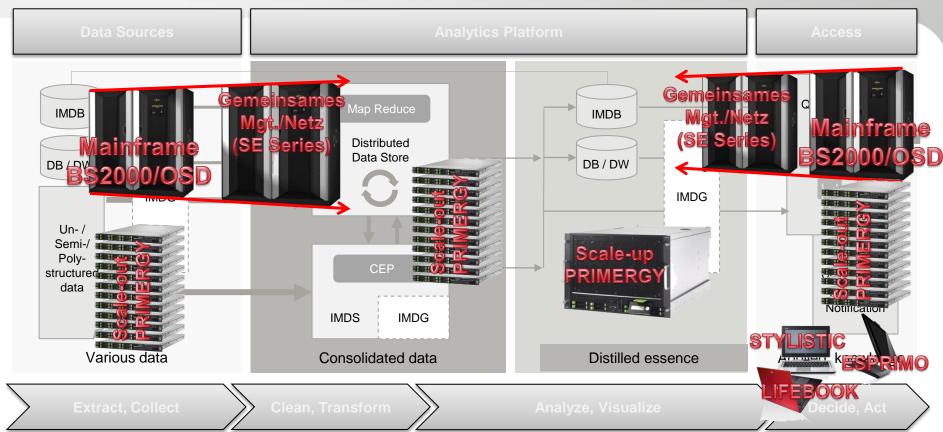


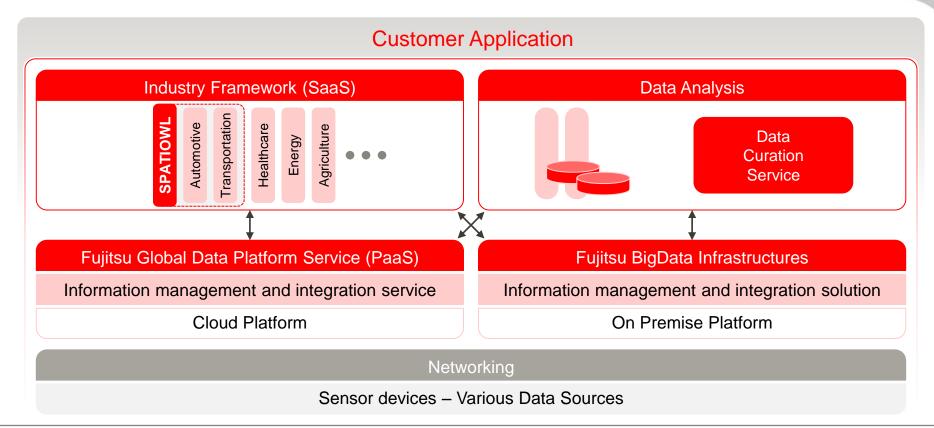

Am Anfang war MapReduce


Technologien für Big Data


Referenzarchitektur für Big Data


Beispiel: Warnung vor Ölspur


Von der Messung zur Meldung


Infrastruktur für Big Data

Big Data Angebot von Fujitsu im Überblick

Zusammenfassung

- Wachstum und Wachstumsgeschwindigkeit der Daten ist Realität
- Daten enthalten versteckte Informationen und Wissen
- Daten sind Grundlage neuer Geschäftsmodelle
- Neue technische Möglichkeiten der Datenhaltung und -verarbeitung
- Mainframes bleiben die Plattform für hohen Datendurchsatz

Noch nicht alles klar, noch eher "mystifying" als "demystifying" und ...

Visualisierung von Big Data

- Google books
 - Digitalisierung analoger
 Buchbestände
 - 15 Millionen Bücher bis 2015
- Auswertung von n-Grammen
 - n-Gramm hier Phrase von n Wörtern
 - Relative Häufigkeit über die Zeit
 - Forschungsarbeit von Erez Lieberman Aiden und Jean-Baptiste Michel
- Verfügbar als Web-Service
 - http://books.google.com/ngrams

shaping tomorrow with you